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In this paper a non-linear framework is developed of the dynamic behavior of a system
with distributed electrostrictive coupling. A framework for the derivation of the governing
equations is presented which is sufficiently general to model the dynamics of a broad range
of non-linear systems. The constitutive relations for electrostrictors are developed in terms
of the standard quadratic function and the hyperbolic tangent squared function of the
applied electric field. Non-linear coupled equations of motion are derived by introducing
the constitutive relations into Hamilton’s Principle. Approximate system equations are
derived using the assumed mode method. Experimental validation of the equations is
accomplished by examining the static and dynamic response of a cantilevered beam
actuated with a distributed electrostrictive actuator.
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1. INTRODUCTION

Electrostriction is a fundamental phenomenon characterizing the response of any dielectric
material subject to an applied electric field. An electric field produces expansion in the
direction of the field and a contraction in the transverse directions. However, these strains
are significant only in materials which feature a very large dielectric permittivity. One such
example is the relaxor ferroelectric PMN–PT (0·9(Pb[Mg1/3Nb2/3]O3–0·1(PbTiO3)), which is
used in this study.

Applications involving electrostrictors primarily use the material in stacks and rely upon
the longitudinal properties of the material as opposed to the smaller transverse properties
[1–7]. A large actuation potential, high set-point accuracy and low hysteresis make
electrostrictors a choice material for quasi-static micro-positioning devices. Despite these
advantages, few applications have implemented electrostrictors as structural actuators due
to the non-linearity and temperature sensitivity of electrostrictors [8–11]. Although some
control approaches have utilized electrostrictors in these non-linear regimes [12, 13],
piezoceramics continue to dominate structural control applications.

In this paper an attempt is made to lower the barriers to the application of
electrostrictors by creating an analysis framework which can express the approximate
governing equations of a non-linear electroceramic system with distributed electrostrictive
coupling. This general analysis is specifically applied to distributed electrostrictors in
structural actuation and sensing applications. The paper is divided into four large sections.
In section 2, variational principles and Hamilton’s equation are described for coupled
non-linear systems. A proof is presented which allows the simplification of Hamilton’s
equation when the constitutive equations can be expressed in terms of a thermodynamic
formalism. In the next sections 3 and 4, the quadratic equations of motion for an
electrostrictive system are derived, following the general form of Hamilton’s equation.
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In section 5, hyperbolic tangent squared constitutive relationships are used as the basis
for the general equations of motion. The thermodynamic formalism allows a simplification
of the derivation of the equations of motion. Section 6 features an experimental
investigation with an unconstrained electrostrictor and with an electrostrictor on a
cantilevered beam, proving the validity and the limits of the equations of motion.

2. VARIATIONAL PRINCIPLE FOR NON-LINEAR SYSTEMS

Variation principles are a convenient way of finding the equations of motion of a system.
The work done upon a system must take the form of kinetic energy, potential energy or
some other form of internal energy. The governing equations of a system arise by declaring
that the variations of the energies integrated along a path must be zero. In this section
the use of variational principles to model the dynamics of non-linear systems is described.
First, the application of Hamilton’s Principle to non-linear systems is reviewed. Particular
attention is given to describe the energy terms when the state variables are coupled. Then,
an electric enthalpy function is introduced in order to simplify the equations.

2.1. ’    - 

Hamilton’s Principle is a common variational principle in dynamics. The generalized
form of Hamilton’s Principle for a coupled electromechanical system with a quasi-static
electric field is

g
t2

t1

[dT*− dU+ dW*e − dWm + dW] dt=0, (1)

where T* is the complimentary kinetic energy, U is the potential energy, W*e is the
complimentary electrical energy, Wm is the magnetic energy, and W represents the
externally applied work.

For linear systems, the energy terms can be stated explicitly in terms of the state
variables. With non-linear materials, the energy terms must be integrated as the system
changes. From Crandall [14], the integral forms of the energy terms are

T*=gV g
u.̃

0

ru̇j du̇j dV, U=gV g
S	

0

Tij dSij dV,

W*e =gV g
E	

0

Dm dEm dV, Wm =gV g
B	

0

Hm dBm dV,

dW=gA

fidui dA− s
j

d8jqj , (2)

where u represents the mechanical displacements, 8 is the electric potential, f is the surface
force and q is the externally supplied charge. S is the strain, T is the stress, E is the electric
field, D is the electrical displacement, B is the magnetic flux density and H is the magnetic
field. The superscript tilde (0) indicates the final state.

For active materials, additional constraints are imposed upon equation (2) in the form
of constitutive relationships. In these cases, it is easier to think of the energy terms as
depending on a single dummy variable, j, which reflects the state of the system along the
arbitrarily varying path. As a result, the single state variable reflects an instant in the
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progression of the system. The variation in energy still needs to be examined as the system
changes. Substituting the dummy variable into the energy expressions changes the
integration with respect to the state variables, S, E and B, into an integration with respect
to j. By the chain rule, equations (2) become

T*=gV g
j	

0

du̇jru̇j dV, U=gV g
j	

0

S'ij(j)Tij(S(j), E(j)) dj dV, (3, 4)

W*e =gV g
j	

0

E'm(j)Dm(S(j), E(j)) dj dV, Wm =gV g
j	

0

B'm(S(j), H(j))Hm(j) dj dV.

(5, 6)

The prime indicates a derivative with respect to j.
For electrically actuated active materials, such as electrostrictors, the magnetic energy

terms are negligible. Substituting the potential energy and the electrical energy terms from
equations (4) and (5) into Hamilton’s Principle, (1), yields

g
t2

t1
$dT*− d gV g

j̃

0

1Skl

1j
Tkl dj dV+ d gV g

j̃

0

1En

1j
Dn dV+ dW% dt=0. (7)

The variation of each energy term needs to be examined with respect to each of the state
variables. As a result, the variation is defined as

d gV g
j̃

0

( · ) dj dV=gV g
j̃

0 61( · )
1E

dE+
1( · )
1S

dS+
1( · )
1E'

dE'+
1( · )
1S'

dS'7 dj dV. (8)

The variation is indicated by d. Hamilton’s equation states that the variation of state
variables must integrate to zero. No claims are made about the variations of a derivative
of a state variable, such as dE' or dS'. As a result, the variations with respect to a derivative
of a state variable, dE' or dS', will need to be transformed into a variation of the state
variable, dE or dS, through an integration by parts with respect to j.

The form of Hamilton’s Principle given in equations (3)–(7) places minimal restrictions
on the system. There are no constraints on the constitutive relationships; the relationships
need not even be smooth. Similarly, there are no restrictions about the nature of the
external forcing. The only requirement is that the strain and the electric field be
non-dissipative, continuous functions of j. Because of the generality of the framework,
Hamilton’s Principle will be utilized later in this section in order to derive the variational
principle for an electrostrictively coupled system using two types of constitutive equations:
a quadratic relationship and a hyperbolic squared relationship.

2.2.    ’ 

The derivation of the system dynamics can be substantially simplified when the
constitutive relationships are derived from a thermodynamic relationship. Thermodynamic
formalisms are an expression of the First Law of Thermodynamics and instill a
compatibility between the electrical and mechanical equations. There are eight ways of
expressing the thermodynamic potentials, and there are numerous texts that elaborate on
other expressions [13, 15]. For simplicity, let us examine the behavior of a system that can
be described in terms of an electric enthalpy function, H2. The constitutive relationships
can be defined in terms of H2 as
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Tij = 1H2/1Sij and Dm = 1H2/1Em . (9)

Introducing the definition of electric enthalpy into Hamilton’s Principle (7), yields

g
t2

t1
$dT*− d gV g

j	

0

1Skl

1j

1H2

1Skl
dj dV− d gV g

j	

0

1En

1j

1H2

1En
dj dV+ dW% dt=0. (10)

Realizing that the integrand is a chain rule expansion of H2 allows the two integrals of
H2 to be combined. Equation (10) can be expressed as

g
t2

t1
$dT*− d gV g

j	

0

1H2

1j
dj dV+ dW% dt=g

t2

t1
$dT*− d gV

H2b
j	

0

dV+ dW% dt=0,

(11)

where the value at j= j	 reflects the current state of the system and j=0 reflects the null
state of the system; i.e., H2(j	 )=H2 and H2(0)=0.

Evaluating the enthalpy function in equation (11) produces the variational indicator of
a system described by an enthalpy function as given by Tiersten [16]:

g
t2

t1
$dT*− d gV

H2 dV+ dW% dt=0. (12)

Bringing the variation on the electric enthalpy inside the integral gives

g
t1

t2
$dT*+gV 0−1H2

1En
dEn −

1H2

1Skl
dSkl1 dV+ dW% dt=0. (13)

Substituting the definitions of electric enthalpy from equation (9) into equation (13) yields
the final form of the variational principle for a system which can be described by an electric
enthalpy function:

g
t1

t2
$dT*+gV

(DndEn −TkldSkl) dV+ dW% dt=0. (14)

For any system where the constitutive relations can be expressed in terms of an enthalpy
function, equation (14) is a form of the variational principle that is equivalent to the full
form given in equation (7). In this proof, no assumptions are made about the linearity or
the nature of the coupling. All that is required is that there exists an enthalpy function
for the system that is differentiable with respect to S and E. Equation (14) is the standard
form of Hamilton’s Principle for a linear piezoceramic system [17], because such systems
are derived from the thermodynamic formalism. The form of the constitutive relationships
that we will use would allow the use of this thermodynamic simplification. However, not
all constitutive relationships are formed from thermodynamic potentials. Often, higher
order terms in constitutive relationships are discarded without re-deriving the
thermodynamic potential. In brief, the thermodynamic simplification is not always
desirable or feasible. As a result, in this paper we will address variations in the work and
energy terms as given in equation (7) instead of always jumping to the simplifications
offered by equation (14).
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3. QUADRATIC CONSTITUTIVE RELATIONSHIPS

Electrostrictors demonstrate a non-linear relationship between strain and applied
electric field. In particular, the strain in the material depends upon the even powers of the
applied electric field. The constitutive relationship for an electrostrictor can be formulated
from a thermodynamic potential, such as the Gibbs free energy or enthalpy. This
expansion has been detailed in many different articles [13, 18–21]; hence, only the resulting
non-linear constitutive relationships for an electrostrictor at constant temperature are
presented:

Dm = oT
mnEn + oT

mnopEnEoEp +2rmnijklEnTijTkl +· · ·+h.o.t.

+2mmnijEnTij +4hmnopijEnEoEpTij +· · ·+h.o.t.,

Sij = sE
ijklTkl + sE

ijklmnTklTmn +2rmnijklEmEnTkl +· · ·+h.o.t.

+mmnijEmEn + hmnopijEmEnEoEp +· · ·+h.o.t.

In the literature, the higher order terms typically are dropped from the electrostrictive
constitutive relationships. This yields

Dm = oT
mnEn +2rmnijklEnTijTkl +2mmnijEnTij , Sij = sE

ijklTkl +2rmnijklEmEnTkl +mmnijEmEn ,

(16)

where D is the electrical displacement, E is the electric field, T is the stress and S is the
strain. The dielectric permittivity, oT, indicates the charge stored in the capacitive element
of the electrostrictor at constant stress. The electrostriction term, m, is a second order
electromechanical coupling term. The compliance, sE, relates stress and strain at constant
(zero) electric field. The elastostriction term, r, can be thought of as either an electric field
induced correction to the compliance or a stress induced correction to the electrostrictive
coefficient. The electric field varying compliance, s*, is given by

s*ijkl = sE
ijkl +2rmnijklEmEn . (17)

The stiffness variation and importance of the elastostriction term is addressed in detail in
the experimental section of this paper.

Neglecting the elastostriction term, the electrostrictive constitutive relations simplify to
the standard quadratic model:

Dm = oT
mnEn +2mmnijEnTij , Sij =mijpqEpEq + sE

ijklTkl . (18)

The quadratic model is the form most often quoted in the electrostrictive literature. The
limitations of equation (18) are addressed in more detail in the experimental section of this
paper.

The form of the constitutive relationships given in equation (18) are the forms most
easily measured experimentally. For example, the m constants are found by applying an
electric field on an unconstrained (i.e., zero stress) material. However, letting strain and
electric field be the independent variables eases the development of the equations of motion
using variational principles and allows for simpler and intuitive assumed modes of
displacement and voltage. Rewriting the quadratic constitutive relations (18), yields

Dm = oT
mnEn −2mmnijCE

ijklmklpqEnEpEq +2mmnijEnCE
ijklSkl ,

Tij =−CE
ijklmklpqEpEq +CE

ijklSkl , (19)

where CE
ijkl =(sE

ijkl)−1. Equation (19) could also have been found by evaluating a different
thermodynamic form.
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Changing from tensor notation to matrix notation yields the reduced constitutive
relationship for an electrostrictor,

6DS7=$ oT

m*t

2m*
sE %6ET7, (20)

where m* varies with the electric field. The m values in the tensor notation and in the
expanded matrix are material constants. Most of the electrostrictive literature reduces the
fourth order tensor notation on the electrostrictive term to two indexes: mmnij =mmi .
Expanding the matrices, the electrostrictive constitutive relationships, in engineering
notation, are in equation 21 see page 7. Equation (21) illustrates the similarities between
the constitutive relationships of electrostrictors and piezoelectrics. For example, the form
of m* with the electric field only in the 3-direction is similar in form to the d
electromechanical coupling matrix for piezoceramics. However, there are some strong
dissimilarities. Electrostrictors are isotropic materials when there is no applied electric
field. Piezoceramics are orthotropic due to their poling. The constitutive relationships for
electrostrictives can be thought of as being field dependent in this form. In addition, a
factor of two is needed in the electromechanical coupling between stress and charge but
this factor is not needed in the coupling between electric field and strain.

4. GENERAL QUADRATIC MODEL FOR ELECTROSTRICTIVE SYSTEMS

In this section the general equations of motion are derived for an electrostrictively
coupled distributed electromechanical system. Hamilton’s Principle is used in conjunction
with Rayleigh–Ritz assumed modes to derive the equations of motion for the non-linear
electro-elastic media.

4.1.        

The following steps provide a general framework for dealing with electromechanical
systems with non-linear coupling. Although in this paper the derivation is described for
an electrostrictively coupled system, the basic procedure is applicable to any non-linear
electromechanical system, given that it can be described by a set of constitutive relations
which are piece-wise continuous and non-dissipative.

The general system considered in this paper is represented in Figure 1. The
electromechanical system is composed of an elastic body with inclusions of electrostrictive
material which are electroded arbitrarily. The displacements within the elastic body and
electric fields about the electrodes will be combined through the electrostrictive properties
to form the electromechanical coupled equations of motion.

The general form of Hamilton’s Principle was described in section 2.1. The evaluation
of the variations needs to be performed for each of the terms in equation (7). The variation
of the complementary kinetic energy is

dT*=gV

d g
u.̃

0

du̇tru̇ dV. (22)

Bringing the variation inside of the integral gives

dT*=gV

du̇tru̇ dV. (23)
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Figure 1. The electroelastic continuum geometry, illustrating inclusions of electrostrictive material which are
electroded arbitrarily.

Integrating by parts yields

g
t2

t1

dT* dt=gV

dutru̇b
t2

t1

dV−g
t2

t1
gV

dutrü dV dt, (24)

where the first term must be zero. Hamilton’s Principle allows arbitrary variation of the
path between the endpoints, but requires the variation at the endpoints to be zero. The
first term in equation (24) takes the difference of the variations of u at the endpoints t1

and t2, which must be zero. As a result, the variation of the kinetic energy is

g
t2

t1

dT* dt=−g
t2

t1
gV

dutrü dV dt. (25)

The potential energy of the system, equation (4), requires more care in its evaluation than
the kinetic energy terms due to the coupling between the mechanical and the electrical
terms. Substituting for stress from the quadratic tensor constitutive relationship in
equation (19) gives

U=gV g
j	

0

{−CE
ijklmklpqEpEqS'ij +CE

ijklSklS'ij} dj dV. (26)
zXXXXXcXXXXXv

U	

Taking the variation and requiring compatibility with the constitutive relationships yields

dU=gV g
j	

0 61U	
1En

+
1U	
1Skl

dSkl +
1U	
1S'ij

dS'ij7 dj dV

= gV g
j	

0

{(−2CE
ijklmklpqEpS'ij)dEq +(CE

ijklS'ij)dSkl

+ (−CE
ijklmklpqEpEq +CE

ijklSkl)dS'ij} dj dV. (27)



 19

Integrating the last term in equation (27) by parts in order to transform the variation of
S' into a variation of S and cancelling the redundant strain terms yields

dU=gV 60g
j	

0

−2CE
ijklmklpqEpS'ij dj1dEn +0g

j	

0

2CE
ijklmklpqEpE'q dj

+(−CE
ijklmklpqEpEq +CE

ijkl
Skl)b

j	

01dSij7 dV. (28)

Evaluation of the first integration is not easy, and it will be retained in its unevaluated
form since it will be cancelled by a term arising in the electrical energy expression. The
second integration will be evaluated directly, since there is only one path dependent
variable, E. Let j= j	 represent the present state of the system and let j=0 correspond
to zero field and zero strain conditions:

S(j= j	 )=S, E(j= j	 )=E, S(j=0)=0, E(j=0)=0. (29)

Equation (28) simplifies to

dU=gV 60g
j	

0

−2CE
ijklmklpqEpS'ij dj1dEq +(CE

ijklSkl )dSij7 dV. (30)

The electrical energy terms, equation (5), can be evaluated in a manner similar to the
potential energy terms. Substituting for electrical displacement from the quadratic
constitutive relationship (19), gives

W*e =gV g
j	

0

{(oT
mn −2mmnijCE

ijklmklpqEpEq)EnE'm +2mmnijCE
ijklSklEnE'm} dj dV. (31)

zXXXXXXXXXXcXXXXXXXXXXv
W	 *e

Taking the variation yields

dW*e =gV g
j	

0 61W	 *e
1Ep

dEp +
1W	 *e
1Skl

dSkl +
1W	 *e
1E'm

dE'm7 dj dV

=gV g
j	

0

{(oT
mnE'm −6mmnijCE

ijklmklpqEpEqE*m )dEn +(2mmnijCE
ijklEnE'm)dSkl

+(oT
mnEn −2mmnijCE

klpqmklpqEpEqEn +2mmnijCE
ijklEnSkl)dE'm} dj dV. (32)

Integrating the last term in equation (32) by parts in order to transform the variation of
E' into a variation on E yields.

dW*e =gV 60g
j	

0

2mmnijCE
ijklEnE'm dj1dSkl
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+0g
j	

0

−2mmnijCE
ijklEnS'kl dj+(oT

mnEn −2mmnijCE
ijklmklpqEpEqEn

+2mmnijCE
ijklEnSkl)b

j	

01dEm7 dV. (33)

Evaluating the first integral, which has an uncoupled integrand, simplifies the equation.
Again, let j= j̃ represent the present state of the system, while j=0 corresponds to zero
field and zero strain conditions, as indicated in equation (29):

dW*e =gV 6(mmnijCE
ijklEnEm)dSkl

+0g
j	

0

−2mmnijCE
ijklEnS'kl dj+(oT

mnEn −2mmnijEnCE
ijklmklpqEpEq

+2mmnijEnCE
ijklSkl)1dEm7 dV. (34)

Each of the energy variations in equation (7) has now been evaluated in terms of the
electrostrictive constitutive relationship. Substituting for the variations in kinetic energy,
potential energy, electrical energy, and external work, Hamilton’s equation becomes

g
t2

t1
$gV

− rüjduj dV+gV

(−CE
ijklSij +mmnijEnCE

ijklEm)dSkl dV

+gV

(oT
mnEn −2mmnijEnCE

ijklmklpqEpEq +2mmnijEnCE
ijklSkl)dEm dV

+gV

fidui − s
j

qjd8j% dt=0, (35)

where the unevaluated integrals in the potential energy and electrical energy terms have
cancelled each other.

Comparing the terms in equation (35) and in the quadratic constitutive equation given
in equation (19), Hamilton’s equation for the electrostrictively coupled system can be
expressed as

g
t2

t1
$gV

− rüjduj dV+gV

−TkldSkl dV+gV

DmdEm dV+gV

fidui dV− s
j

qjd8j% dt=0.

(36)

The derivation started by evaluating the energy along a path and concluded by stating
that the energies only need to be evaluated at the endpoints. In other words, for the simpli-
fied dynamics of an electrostrictor, the variational principle can be formed directly from
the quadratic constitutive relationships, as indicated in section 3.2. This is because the
quadratic constitutive relationships were derived from a thermodynamic potential. The full
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development of the governing equations from Hamilton’s Principle was presented for the
sake of generality and thoroughness.

4.2.   

In the previous subsection the general form of Hamilton’s equation was derived for an
electrostrictively coupled electromechanical system. The general equations can be solved
either in a finite elements routine or with a Rayleigh–Ritz formulation. Although different
in form, these methods are identical in substance. In finite elements, each node introduces
another degree of freedom. In Rayleigh–Ritz, representative shape functions form each
degree-of-freedom. As a result, the same governing equations are used in either
formulation technique. A shift between the two methods only requires a redefinition of
the mechanical and electrical shape functions. In this paper terminology most often
associated with the Rayleigh–Ritz assumed modes formulation will be used.

Both approximate solution methods find the strain–displacement relationship and the
field–potential relationship in terms of generalized co-ordinates relating to the mechanical
and electrical displacements. The strain–displacement and field–potential relationships can
be introduced as

Sij =Lu
ijquq(x, t) and Em =Lv

m8(x, t)=−8,m(x, t), (37)

where u is the mechanical displacement, 8 is the electric potential, Lu is the linear
differential operator for the particular elasticity problem, and Lv is the gradient operator.
In indicial notation, the elasticity operator for 3-D general elasticity is

Lu
ijq =

1
2 0diq

1

1rj
+ djq

1

1ri1. (38)

The deflections, u, of the structure can be expressed in terms of assumed deflection shape
functions, cr(x), and the vector of time varying modal amplitudes, r(t):

uq(x, t)=cr
qr(x)rr(t)= {cr

q1(x) · · · cr
qa(x)}8r1(t)

.

.

.
ra(t)9. (39)

The modal displacement vectors are restricted only so that they obey the geometric
boundary conditions of the problem. Similarly, the electrical potential can be expressed
in terms of a modal vector and a vector of modal voltage amplitudes

8(x, t)=cv
s (x)vs(t)= {cv

1(x)· · · cv
b(x)}8v1(t)

.

.

.
vb(t)9, (40)

where the only restriction on the modal field vector is that it satisfies the prescribed
electrical boundary conditions. The modal field vector must obey voltage boundary
conditions, such as constant across a conductor. We can simplify the algebra by combining
the differential operators and the modal vectors

Sij(x, t)=Nr
ijr(x)rr(t), r=1, · · · , a; Em(x, t)=Nv

ms(x)vs(t), s=1, · · · , b. (41)
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4.3.     

Substituting these modal assumptions and the notation definition into the quadratic
form of the general equations of motion (35), gives

g
t2

t1
$gV

drr(−r̈sc
r
jsrcr

jr − rsNr
ijsCE

ijklNr
klr +Nr

klrCE
ijklmmnijNv

nsNv
mpvsvp) dV

+gV

dvr(Nv
nto

T
mnNv

mrvt −2Nv
mrNv

ntmmnijCE
ijklmklpqNv

puNv
qvvtvuvv

+2vtNv
mrmmnijNv

ntCE
ijklNr

kluru) dV+gV

drrc
r
rsfs dV+ s dvrc

v
sqs% dt=0. (42)

Allowing arbitrary variations of r and v, two coupled equations in the generalized
co-ordinates are obtained. These will be called the actuator and the sensor equations of
the non-linear electro-elastic system. The actuator equation describes the dynamics of the
mechanical system and the sensor equation describes the dynamics of the electrical system:

Msrr̈s +Ksrrs −Urspvsvp =Bf
r , actuator equation;

2Uutrruvt −Grtuvvtvuvv +Qrtvt =Bq
rsqs , sensor equation. (43)

The system mass is defined so that it includes inertial components from the electrostrictive
actuator and from the host structure:

Msr =gV

cr
jsrcr

jr dV. (44)

The stiffness of the system is defined so that both the electrostrictor’s and the structure’s
stiffness are included:

Ksr =gV

Nr
ijsCE

ijklNr
klr dV. (45)

The electromechanical coupling term is defined as

Ursp =gV

Nr
klrCE

ijklmmnijNv
nsNv

mp dV, (46)

the electrostrictive capacitance is

Qrt =gV

Nv
nto

T
mnNv

mr dV, (47)

and the higher order charge storage is

Grstq =gV

2Nv
mrmmnijCE

ijklmklpqNv
puNv

qvNv
nt dV. (48)
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The forcing matrices are defined in terms of the modal vectors evaluated at the points at
which the external work is supplied. The effect of the distributed forcing is found by
integrating the force over the mode and the applied charge is evaluated at the rth electrode:

B f
r =gV

cr
rs fs dV, Bq

rs =cv
s (xr). (49)

The actuator and sensor equation as given in equation (43) contain the generalized
dynamics of an electrostrictively coupled electromechanical system. In the actuator
equation, the M, K, and B f terms are the standard terms that arise from approximate
techniques to analyze continuous systems. The M and K terms are influenced not only by
the host structure but also by the actuators. The actuator also makes its presence felt in
the U electromechanical coupling term. The quadratic behavior of the electrostrictor is
indicated by the quadratic voltage terms. The B f term indicates the effect that the forcing
has upon each deflection mode of the structure.

In the sensor equation, the Q and Bq terms are the standard terms that arise from placing
charge on a capacitor. The Q term is directly related to the dielectric permittivity of an
electrostrictor. Due to the large relative dielectric permittivity of electrostrictors, the Q
term tends to dominate the sensor equation. At large actuation fields, the higher-order
charge storage term, G, dominates. The electromechanical coupling provided by the U

term is most significant when the electrostrictor is used as a sensor. The Bq term indicates
the location of the actuator being supplied with charge.

4.4.      

In the most general form, the constitutive relationships for electrostrictors and the
governing equations for an electrostrictively coupled electromechanical system are best
described in index notation. However, the index notation is rather cumbersome. This
simplification of the quadratic equations for an electrostrictively coupled electromechan-
ical system assumes that there is only one prescribed voltage source (i.e., v is scalar). In
this case, equation (43) reduces to

Mr̈+Kr−U*v=B f, actuator equation;

2U*tr−G*n+Qv=Bqq, sensor equation; (50)

where the U* matrix and the G* term include voltage dependencies. The matrix form of
the system mass, the system stiffness and the electrostrictive capacitance remain essentially
unchanged from the form given in equations (44), (45) and (47). The mass matrix is

M=gV

crtrcr dV. (51)

Similarly, the stiffness matrix is

K=gV

NrtCENr dV. (52)

The electrostrictive capacitance matrix is

Q=gV

Nvt
oTNv dV (53)
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and influence matrices are

Bf =gA

crtf dA, Bq =cvt(x). (54)

The electrostrictive term, m, necessitates a rearrangement of the electromechanical
coupling term and the higher order charge storage term. The electromechanical coupling
matrix becomes

U*=gV

NrtCaEm*tNv dV, (55)

and the higher order charge storage matrix is

G*=gV

2Nvtm*CaEm*tNv dV, (56)

where m* is implicitly defined in equations (20) and (21).
The matrix forms of the terms used in equations (51)–(56) are the expansions of the

tensors previously defined in this paper. The matrix form of the electric field varying
electrostriction term, the dielectric coupling and the stiffness terms were given in equation
(21). The mechanical displacement shape function is a matrix of the deformation shapes
of all of the shape functions. The mechanical displacement is given by the product of the
shape function with their time varying amplitudes:

u(x, t)=cr(x)r(t)= &c
r
11(x)

cr
21(x)

cr
31(x)

cr
12(x)

cr
22(x)

cr
32(x)

. . .

. . .

. . .'8r1(t)
r2(t).

.

. 9. (57)

The strains in the structure are product of the linear differential operator for the particular
elasticity problem and the vector of mechanical displacements:

K L1

1x
0 0G G

G G0
1

1y
0G G

G G0 0
1

1z cr
11(x) cr

12(x) . . . r1(t)G G
G G G

G

G

K

k
G
G

G

L

l
g
G

G

F

f
h
G

G

J

j
cr

21(x) cr
22(x) . . . r2(t) . (58)S(x, t)=Nr(x)r(t)=

0
1
2

1

1z
1
2

1

1yG G cr
31(x) cr

32(x) . . .
.
.
.G G1

2
1

1z
0

1
2

1

1xG G
G G
G G1

2
1

1y
1
2

1

1x
0

k l

The electrical potentials correspond to the voltages at the electrodes:

8(x, t)=cv(x)v(t). (59)
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The electrical field comes from the variation of the electrical potential,

E(x, t)=Nv(x)v(t)=−9cvv, (60)

where 9 is the gradient operator.
The forms of the actuator and sensor equations as given in equation (50) represent a

simplification when only one actuator is present on the structure. The general form of the
actuator and sensor equations, (43), can also be readily translated to matrix form for other
actuation scenarios, such when as the electric field is present in only one direction or the
active material is used only as an actuator.

5. HYPERBOLIC TANGENT FORMULATION

The high field behavior of electrostrictors is best described in terms of a hyperbolic
tangent squared formulation instead of the more traditional quadratic formulation. The
hyperbolic tangent formulation captures the high field saturation found in electrostrictors.
Additionally, the ability to incorporate the hyperbolic tangent formulation illustrates the
generality of the non-linear analysis framework presented in this paper. In this section the
hyperbolic tangent constitutive relationships are presented, the general equations of
motion are derived, the general equations are placed in an assumed modes formulation.
By assuming that the voltage is an applied time function, the general equations of motion
are represented as state space equations.

5.1.    

A very general form of the electrostrictive constitutive relationships was given in
equation (15). This relationship was simplified to the form given in equation (16) by
neglecting higher order terms. As an alternate simplification, the higher order terms can
be combined into hyperbolic tangent formulation. This is an empirical simplification that
is introduced because it provides good correlation with the experimental strain data across
a wide range of electric field levels.

The hyperbolic tangent form of the constitutive relations are derived from a
thermodynamic potential which is composed of hyperbolic tangent terms [9, 11, 13].
Electric field direction terms are chosen to be the lowest order arrangements which allows
the material to be isotropic. The enthalpy formulation, H (different from the electric
enthalpy function, H2), yields electric field and stress as the dependent variables:

H=−1
2omnEmEn − 1

2sijklTijTkl

−
1
k2 rmnijklTijTkl tanh2 (k=E=) EmEn

=E=2 −
1
k2 mmnijTij tanh2 (k=E=) EmEn

=E=2 . (61)

The constitutive relations are found by evaluating the partial derivatives of H:

(1H/1Em)T =−Dm and (1H/1Tij)E =−Sij . (62)

The hyperbolic model for the electromechanical coupling of an electrostrictor becomes

Dm = oT
mnEn +

2
k

mmnijTij
sinh (k=E=)
cosh3 (k=E=)

En

=E=+
2
k

rmnijklTijTkl
sinh (k=E=)
cosh3(k=E=)

En

=E= ,

Sij = sE
ijklTkl +

1
k2 mmnij tanh2(k=E=) EmEn

=E=2 +
2
k2 rmnijklTkl tanh2 (k=E=) EmEn

=E=2 . (63)

The inherent one-dimensional behavior of the isotropic electrostrictor is extended to three
dimensions with the directional unit vectors En/=E= and EmEn/=E=2. These equations
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represent the non-linear electrostrictive constitutive relationships at constant temperature.
This form of the constitutive equations will be called the hyperbolic model. The material
parameters are measured most easily through the constitutive relationship expressed in
equation (63). Note that the hyperbolic model expressed in equation (63) is similar to the
model developed by Hom and Shankar [11] if electric field is substituted for the electrical
polarization.

The hyperbolic form of the constitutive relationships given in equation (63) needs to be
reformulated so that strain is an independent variable, in order to ease the development
of the general equations of motion:

Tkl =C*ijklSij −
1
k2 C*ijklmmnij tanh2 (k=E=) EmEn

=E=2 ,

Dm = oT
mnEm +

2
k

mmnijC*tuijStu
sinh (k=E=)
cosh3 (k=E=)

En

=E=

−
2
k3 mmnijmvwtuC*tuij

sinh3 (k=E=)
cosh5 (k=E=)

EnEvEw

=E=3

+
2
k

rmnijklC*tuijC*pqkl
sinh (k=E=)
cosh3 (k=E=)

En

=E=

×0SpqStu −
2
k2 mvwtuSpq tanh2 (k=E=) EvEw

=E=2

+
1
k4 mrspqmvwtu tanh4 (k=E=) ErEsEvEw

=E=4 1. (64)

The superscript asterisk on the stiffness matrix indicates that electric field terms are buried
within. The variable stiffness matrix is defined as

C*ijkl=0sE
ijkl +

2
k2 rmnijkl tanh2 (k=E=) EmEn

=E=2 1
−1

. (65)

The constitutive relationships are rearranged to give equation (64) results in terms that are
of higher order than those truncated to create the original enthalpy formulation. As a
result, equations (64) and (65) are simplified. Care is taken that the constitutive
relationships can still be expressed in terms of a thermodynamic formalism.

The hyperbolic tangent function in the denominator needs to be brought into the
numerator. This transformation is done using a Taylor series expansion:

C*ijkl =C*ijkl =E=0 +Em
1C*ijkl

1Em bE=0

+h.o.t.=
1
sE

ijkl
−2

rmnijkl

(sE
ijkl)2 EmEn +h.o.t. (66)

Dropping the higher order terms, the field varying stiffness becomes

C*ijkl =
1
sE

ijkl
−2

rmnijkl

(sE
ijkl)2 EmEn =CE

ijkl −C	 ijklmnEmEn . (67)

The simplified stiffness term is substituted into the electrical displacement term for the
hyperbolic model, which was given in equation (62). Neglecting any terms that include any
combination of strain and electric field that is higher than third order, the constitutive
relationships become
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Tkl =CE
ijklSij −C	 ijklmnEmEnSij −

1
k2 mmnijCE

ijkl tanh2 (k=E=) EmEn

=E=2 ,

Dm = oT
mnEn +

2
k

mmnijCE
ijklSkl

sinh (k=E=)
cosh3 (k=E=)

En

=E=−
2
k3 mmnijmvwtuCE

tuij

×
sinh3 (k=E=)
cosh5 (k=E=)

EnEvEw

=E=3 +C	 ijklmnEnSijSkl . (68)

This is an equivalent form, but not equal form, to the hyperbolic model presented in
equation (63). The form given in equation (68) is that most easily incorporated into the
dynamic system model, while the form given in equation (63) is the form in which the
material coefficients are most easily measured.

The form of the hyperbolic constitutive relations given in equation (68) can be derived
from a thermodynamic potential. The elastic enthalpy function, H1, yields the constitutive
relations of the form expressed in equation (68):

H1 =−1
2omnEmEn + 1

2C
E
ijklSijSkl − 1

2C	 ijklmnEmEnSijSkl

−
1
k2 mmnijCE

ijklSkl tanh2 (k=E=) EmEn

=E=2

+
1

2k4 mmnijmvwtuCE
tuij tanh4 (k=E=) EmEnEvEw

=E=4 . (69)

The constitutive relationships can be found by differentiating the elastic enthalpy function:

(1H1/1Em)T =+Dm and (1H1/1Sij)E =Tij . (70)

The hyperbolic model could also have been described in terms of electrical polarization
instead of electric field [9, 11]. An electrical polarization expression of the constitutive
behavior is slightly simpler than the electric field expression and, hence, will make the
general equations of motion simpler. However, an electrical polarization expansion
requires prescribing the charges on the electrodes instead of the voltage on the electrodes.
Since the electric field is most often the prescribed state variable, the hyperbolic model for
this paper has been expressed in terms of electric field instead of electrical polarization.

5.2.         

The equations of motion for an electrostrictor can be found for the hyperbolic
constitutive relationships. The hyperbolic model given in equation (68) was derived from
thermodynamic formalism. It was proven in section 2.2. that the final equation of motion
can be written directly if a thermodynamic formalism exists. Thus, instead of repeating
the steps described performed for the quadratic system, the constitutive relationships are
substituted into Hamilton’s expression, equation (14). The resulting governing equation
is succinctly expressed by substituting equations (68) into the simplified form of the
variational principle, equation (14):

g
t2

t1
$gV

− rüjduj dV+gV 0CE
ijklsij −C	 ijklmnEmEnSij

−
1
k2 mmnijCE

ijkl tanh2 (k=E=)EmEn

=E=2 1dSkl dV
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+gV 0oT
mnEn +

2
k

mmnijCE
ijklSkl

sinh (k=E=)
cosh3 (k=E=)

En

=E=

−
2
k3 mmnijmvwtuCE

tuij
sinh3 (k=E=)
cosh5 (k=E=)

EnEvEw

=E=3

+C	 ijklmnEnSijSkl1dEm dV+gV

fidui dV− s
j

qjd8j% dt=0. (71)

5.3.      

The hyperbolic system of equations can be expressed in the simplified Rayleigh–Ritz
formulation through the modal assumptions given at the beginning of section 4.2.
Substituting the modal assumptions and allowing arbitrary variations of displacements
and voltage, two coupled equations of motion are obtained in the generalized co-ordinates.
For the hyperbolic model, the actuator and sensor equations become

Mpsr̈p +Kpsrp −K	 pqrsrpvqvr −UpqsF*p F*q =Bf
s , actuator equation;

Qrsvr +2Upsrb*F*p rr −Gpqrsb*F*p F*q F*r +Rprvsvprrrv =Bq
s , sensor equation. (72)

Neither the mass matrix nor the electrostrictive capacitance change with the addition of
higher order material non-linearities:

Msr =gV

cr
jsrcr

jr dV, Qrt =gV

Nv
nto

T
mnNv

mr dV, (73)

The stiffness of the system has been divided into two terms. The zero field stiffness is the
same as that given in equation (45),

Ksr =gV

Nr
ijs
CE

ijklNr
klr dV. (74)

The addition of the elastostriction term introduces a stiffness term that is electric field
dependent. In this case, the stiffness correction is

K	 pqrs =gV

C	 ijklmnNr
ijpNr

klsNv
mpNv

nq dV. (75)

The electromechanical coupling term changes from the quadratic to the hyperbolic tangent
formulation:

Upqs =gV

mmnijCE
ijklNr

klsNv
mpNv

nq dV. (76)

The higher order charge storage becomes

Gpqrs =gV

2mmnijmvwtuCE
tuijNv

npNv
vqNv

wrNv
ms dV. (77)
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The inclusion of the elastostriction term introduces a elastostriction charge storage term

Rprvs =gV

C	 ijklmnNr
ijrNr

klvNv
npNv

ms dV. (78)

The hyperbolic electric field dependence has been incorporated into two terms,

F*p =gV

1
k

tanh (kzNv
ijvjNv

ikvk)
vp

zNv
mnvnNv

mqvq

dV (79)

and

b*=gV

sech2 (kzNv
ijvjNv

ik
vk) dV. (80)

5.4.       

The general equations of motion which involve hyperbolic trigonometry can be placed
in a state space representation using matrices instead of tensors. For this simplification,
it is assumed that the elastostriction term is zero. Also, it is assumed that the voltages are
prescribed functions of time. In other words, it is assumed that the active materials are
actuators. However, there are no restrictions on the number of active elements. As a result,
equation (72) can be described as

6ẋy7=$AC B
D%6xu7, (81)

where

x=6rṙ7, u= 8 f

01k tanh (kNvv)1
29, (82)

A=$ 0
−M−1K

I
−M−1Cd%, B=$ 0

M−1B f

0
M−1U%. (83)

The mass matrix, M, the stiffness matrix, K, and the influence matrix, B f, remain
unchanged from the forms given in equations (51), (52) and (54). The electromechanical
coupling matrix is now defined as

U=gV

NrtCEmt dV. (84)

The output equations depend on which variables are desired. Let us assume that the strain
values at some discrete location are desired, y=S(xi): then the other parts of equation
(81) become

C=[Nr(xi) 0], D=[0 0]. (85)
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Figure 2. The cantilevered beam test article.

6. EXPERIMENTS

Experiments were conducted to test the validity of the analytical models of the
electrostrictively coupled electromechanical system. In these tests, the electrostrictor was
driven by a prescribed voltage and both the strain and the induced charge were measured.

6.1.  -

The experiments were conducted on a cantilevered aluminum beam with a surface
bonded electrostrictive wafer, as indicated in Figure 2. The beam was 37·8 cm long, 2·7 cm
wide and 0·16 cm thick. An electrostrictor was bonded to one side of the beam 2·1 cm from
the base and extending 2·7 cm. The electrostrictor was a 0·027 cm thick 0·9 PMN – 0·1 PT
ceramic wafer, manufactured by AVX. The surfaces were electroded with aluminum and
the transverse properties of the wafers (i.e., the m12 values) were utilized. The wafer was
bonded to one side of the beam. Transverse motion of the wafer induced not only a
moment, but also stretching in the beam. The maximum relative dielectric of this
electrostrictor occurred at a temperature of 40°C. All of the experiments were conducted
with the wafer temperature at 28°C. As a result, the experimental data will feature larger
hysteresis than the classic curves of an electrostrictor and will feature larger strains [12, 18].
The basic material properties of the beam and of the electrostrictor are given in Table 1.
The damping ratio of the beam was measured with a ring-down test, the dielectric
permittivity was measured with an Omega multimeter, and the m3311, k, r331111 and stiffness
constants were obtained through experimentation.

T 1

Material properties of beam and actuator

Electrostrictors Stiffness CaE

1111 =120 GPa
Poisson ratio na =0·38 [22]
Dielectric constant oT

33 =17 000o0

m constant m3311 =6·6e−16 m2/V2

k constant k=1·6e−6 V/m
r constant r331111 =3·25e−24 m2/(V2 Pa)
Thermal expansion aQ 1e−6/°C [22]

Fracture toughness K1c =0·9 MPa zm [23]
Ultimate strength su =24 MPa [2]

Beam Stiffness Cs
11 =68 GPA

Poisson ratio ns =0·38
Damping ratio

First mode z=0·6%
Second mode z=0·4%
Third mode z=0·3%
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The electrostrictive wafer was excited with a Kepco model BOP 1000M voltage amplifier
which was fed a sinusoidal signal from a Phillips model PM 5191 function generator. The
modal displacements were measured with a strain gauge located on the reverse side of the
beam from the electrostrictive wafer, 3·3 cm from the base. Data was collected on a
Macintosh Quadra 950 using LabView software, sampling at 4 kHz. The electrical
displacement was measured by integrating the current applied to the actuator.

The strain data was windowed in the frequency domain with an 11-point Hamming
window and then averaged in the time domain over four cycles. A similar process was
performed on the voltage data in order to eliminate the possible effects of added phase.

6.2.     

The experimental results are compared with the models developed in section 4. Both the
quadratic model given in equation (50) and the hyperbolic model given in equation (81)
were used. The values used in the simulations of the experimental data are taken from
values presented in the literature or measured for this paper. No iteration was attempted
to enhance the correlation between the experiments and the model.

For all of the model simulations, the driving voltage was a single frequency sinusoid
and the beam was initially at rest. The model used seven assumed deflection shape
functions, cr(x). Five of these deflection modes reflected the exact mode shape for a
cantilevered beam. The other two mode shapes represented the beam profile if there was
a static electric field on the electrostrictive wafer; one mode represented bending while the
other mode represented extension. These ‘‘static’’ mode shapes help better to represent any
residual strain energy due to the discontinuous stiffness at the electrostrictor [24].

The exact mode shapes for a cantilevered beam are [25]

cr
3r(x)= (cosh lrx−cos lrx)− ar(sinh lrx−sin lrx), (86)

where l and a are unique for each mode of the structure. The first ‘‘static’’ mode shape
represents the bending induced by the electrostrictive wafer. This mode has constant
curvature around the actuator and zero curvature elsewhere. If a1 and a2 represent the
endpoints of the actuator, then the ‘‘static’’ bending mode is given by

0, xQ a1

cr
3r =g

G

G

G

G

F

f

(x− a1)2

a2 − a1
, a1 Q xQ a2,

a2 − a1 +2(x− a2), a2 Q x. (87)

The ‘‘static’’ mode shape associated with extension exhibits constant slope around
the actuator and zero slope elsewhere:

0, xQ a1,

cr
3r =g

G

G

F

f

x− a1

a2 − a1
, a1 Q xQ a2,

1, a2 Q x. (88)

The process of applying Rayleigh–Ritz analysis to a beam with surface mounted actuators
is explained in detail in other sources [12, 13, 17].
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Figure 3. The unconstrained transverse expansion of an electrostrictive wafer. Curve fitting the hyperbolic
model, equation (63), to the data gives the electrostrictive constant, m3322 =6·6e−16 m2/V2 and the relaxation
parameter, k=1·6e−6 V/m. The same m value was used in the quadratic model and gives good low field
correlation. - - - , Experiment; ——, hyperbolic model; · · · , quadratic model.

6.3.   

The electrostrictive effect is characterized by placing a slowly varying electric field across
an unconstrained sample. The resulting curve gives the unadulterated effect of the
electromechanical coupling. In this paper two models were derived to describe the
electromechanical coupling: a quadratic model, equation (18), and a hyperbolic model,
equation (63). Removing all but the direct electrostriction terms for the induced strain and
requiring the electric field to be only in the 3-direction, the electromechanical couplings
are

Sij =m33ijE3E3, quadratic model; Sij =
1
k2 m33ij tanh2 (kE3), hyperbolic model. (89)

Notice that at low field levels, the hyperbolic model reduces to the form of the quadratic
model.

The material parameters were obtained by fitting the hyperbolic model to the
experimental data with a unconstrained non-linear optimization. Experimental data was
from electric fields ranging from DC to 800 V/mm. The resulting material values at 28°C
are m3311 =6·6e−16 m2/V2 for the transverse electrostrictive constant and k=1·6e−6 V/
m for the relaxation parameter. The electrostrictive constant scales the magnitude of the
strain and the relaxation parameter dictates when the strain tends to ‘‘bend over’’ or
saturate with increasing electric field. Since the quadratic model is a low field simplification
of the hyperbolic model, the same electrostrictive constant is used in both models.

As indicated in Figure 3, the hyperbolic model provides a close correlation between the
experiment and the model through out the range of electric field levels. The quadratic
model forms a good approximation of the experiment in the low and moderate electric
field regions. Above 300 V/mm, the quadratic model will over predict the response.
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6.4.  

Elastostriction describes the field-based correction to the induced strain. As indicated
in section 2, the elastostriction term can be interpreted as an electric field based correction
to the compliance of the material. In particular, from equations (17) and (63), the
compliance of an electrostrictor can be expressed in terms of an electric field in only the
3-direction as

s*ijkl = sE
ijkl +2r 33ijklE2

3, quadratic model;

s*ijkl = sE
ijkl +

2
k2 r33ijkl tanh2 (kE3), hyperbolic model. (90)

The first term in the equations represents the compliance at zero electric field and the
second term is the elastostriction correction. In this section we seek to define the magnitude
of the elastostriction term. Notice that the hyperbolic model reduces to the quadratic
model at low field levels, and thus the same value will be used in both models.

Measuring the elastostriction term is difficult. There are two possible techniques for
measuring stiffness as a function of electric field: measuring the actuation potential or
measuring the natural frequency. By far the simplest technique would be to measure the
actuation potential. The actuation potential gives the amount of deformation that the
electrostrictor can produce when its expansion is constrained. Thus, the deformation of
an electrostrictor sandwiched between layers of metal would change based on the relative
thickness and stiffness of the components. This would be an easy method from which to
find the actuator stiffness if the material non-linearity was an electric field-based
non-linearity. However, if the non-linearity of an electrostrictor was a strain based
non-linearity, then the reduced strain from the constraint would give erroneous results. For
example, measuring the induced strain of a piezoceramic would give anomalous results,
since the non-linearity of a piezoceramic is a function of the strain of the material, not
the electric field [26]. In other words, the non-linearity of a piezoceramic is a function of
the deformations of the microstructure. Measuring the stiffness by noting changes in the
natural frequency is valid regardless of whether the non-linearity is electric field based or
strain based.

The variation in the transverse compliance was measured by noting the natural
frequency of a cantilevered beam with an electrostrictor bonded to it. The natural
frequency of the system will vary as a DC electric field is applied to the electrostrictor.
The first natural frequency was experimentally measured by applying a small sinusoidal
signal, 0·5 V/mm, in addition to a large DC electric field. In order to translate the natural
frequencies into an actuator stiffness, equation (81) was used to calculate the natural
frequency as a function of the material stiffness. The stiffness at different electric fields was
obtained by matching the natural frequency versus electric field from the experiment with
the natural frequency versus stiffness from the simulation. The material stiffness as well
as the model predictions are shown in Figure 4. The effective transverse stiffness decreased
by roughly 20% as the electric field increased from 0 to 1300 V/mm. The elastostriction
factor, r, was curve fitted from the hyperbolic model given in equation (90). The calculated
elastostriction constant, r331111, equals 3·25e−24 m2/(V2 Pa). The relaxation parameter, k,
is the same as that which was calculated from Figure 3. The hyperbolic model provides
solid prediction across the range of applied electric fields, while the quadratic model will
under predict the stiffness.

The stiffness variation holds strong implications when calculating the induced strain.
The strain resulting from a constrained electrostrictor is a function of the material stiffness.
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For the case of an electrostrictor sandwiched between two pieces of metal, the
one-dimensional approximation of the induced transverse strain is given by

Sconstrained =
Cata

Cata +Csts Sfree . (91)

In other words, the induced strain is proportional to the unconstrained motion of the
wafer. The proportionality is given by the stiffness ratios and thickness ratios of the
actuator and the host structure.

The stiffness variation can be examined in detail for the case of a 0·27 mm thick
electrostrictive wafer bonded between two pieces of 25 mm wide, 0·50 mm thick aluminum.
The induced strain was measured with a strain gauge mounted on the aluminum. The
results are given in Figure 5. The induced strain was predicted with equation (91) and with
the free strain given in Figure 3. If a constant stiffness is assumed, then the predicted strain
will exceed the measured strain. If the variable stiffness given in Figure 4 is included, then
the predicted and measured strain agree.

It is also indicated in Figure 5 that the non-linearity of an electrostrictor is an electric
field based non-linearity. Since equation (91) accurately predicts the constrained dynamics
of an electrostrictor, the non-linearity of an electrostrictor must be an electric field based
non-linearity instead of a strain based non-linearity. This simplifies the treatment of
electrostrictors in structural actuation [13].

6.5. - 

The quasi-static dynamics of the cantilevered beam system are illustrated in Figure 6.
The experiment found strain as a function of applied electric field across the electrostrictive
wafer. The voltage was a sinusoid at 0·1 Hz. The theoretical strain was found by
numerically evaluating the quadratic actuator equation given by equation (50) and the
hyperbolic actuator equation given by equation (81).

Figure 4. The transverse stiffness variation as a function of the electric field in 0·9 PMN – 0·1 PT. The
hyperbolic model reflects the best fit of equation (67). This gives an r331111 =3·25e−24 m2/(V2Pa). The quadratic
model uses the same elastostriction value. w, Experiment; ——, hyperbolic model; · · · , quadratic model.



 35

Figure 5. The effect of the stiffness variation on the induced strain on an electrostrictor sandwiched between
two pieces of aluminum. The models use the fact that the electrostrictor exhibits an electric field-based
non-linearity. - - - , Experiment; ——, hyperbolic model; . . . , quadratic model.

At low fields, good agreement is achieved with both model and experiments. The
quadratic model tends to break down above 300 V/mm, because the initial simplifying
approximations are no longer valid at the higher field levels. The hyperbolic model
provides excellent agreement across the entire range of applied electric field levels.

6.6.  

The sensor equation of an electrostrictively coupled system can be verified by examining
the charge variation on the electrostrictive wafer. In this case, a 6·00 Hz sinusoidal voltage

Figure 6. Quasi-static deflections of the cantilevered beam. The hyperbolic model used equation (81) to predict
the response. The quadratic model used equation (50). Curve identifications as in Figure 5.
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Figure 7. Charge variations on the electrostrictor during 6 Hz dynamic actuation. The hyperbolic model used
the state-space form of the sensor equation as given by equation (81) and the quadratic model used equation
(50) to calculate the response. The discrepancy between the modelled and experimental result could result from
a variation in the dielectric permittivity. Curve identifications as in Figure 5.

signal was supplied to the wafer. The charge on the electrostrictor was determined by
integrating the current applied to the electrostrictor. The current supplied to the
electrostrictor was measured with a sensing resistor in series with the electrostrictor. The
integrating circuit featured a single pole integrator with a corner at 0·1 Hz. The charge in
the simulation was calculated through the sensor relation in the general equations of
motion.

As shown in Figure 7, the quadratic model overpredicts the charge at large electric field
levels. The hyperbolic model under predicts the charge at all levels, but more closely
approximates the shape of the charge–field curve. The mismatch between experimental and
modelled performance in the low field region suggests that the dielectric permittivity of
the electrostrictor might have been larger than that which was used in the model. The
dielectric is sensitive to changes in temperature, frequency and electric field. The dielectric
was calculated from the capacitance, measured using an Omega multimeter. The
multimeter measures the capacitance at 390 Hz. The capacitance of electrostrictors
increases as the frequency decreases. The capacitance could increase by 20% in the
frequency range between the 390 Hz measurement and the 6 Hz experiment [27]. A 20%
increase in the capacitance would provide a very close correlation between the experiment
and the model in Figure 7.

6.7.  

For a linear system, the frequency response can be expressed as a transfer function.
Unfortunately, when referring to a non-linear system, a transfer function loses its meaning.
As a result, the r.m.s. strain was calculated as a function of the excitation frequency. The
low electrical bias case, 75 V/mm, is presented in Figure 8 and the high electrical bias case
of 400 V/mm is shown in Figure 9. In both cases, a 75 V/mm sinusoidal signal provided
the excitation.
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Figure 8. The frequency response of the cantilevered beam. There is a low DC bias of 75 V/mm. Superharmonic
resonances are prevalent due to the quadratic non-linearity inherent to electrostrictors. The quadratic model and
the hyperbolic model yield identical results at this low electric field level. - - w - -, Experiment; ——, model.

In Figure 8, the first, second and third modes of the beam are visible, and are represented
by peaks in both the modelled and experimental data. There are also large responses at
one half of these natural frequencies. A non-linear system, such as an electrostrictor, is

Figure 9. The frequency response of the cantilevered beam. There is a large DC bias of 400 V/mm. The
superharmonic resonances are virtually eliminated because the high bias effectively linearizes the system. - - w - -,
Experiment; ——, hyperbolic model; - · - · - , quadratic model. Figure 9: Frequency response of the cantilevered
beam. There is a large DC bias of 400 V/mm. The superharmonic resonances are virtually eliminated because
the high bias effectively linearizes the system.
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not constrained to respond at the same frequency as the excitation. An excitation at half
of the natural frequency induces a superharmonic resonance at the natural frequency due
to the quadratic non-linearity inherent in electrostrictors. The hyperbolic model and the
quadratic model provide identical results at this field level. Additionally, the modelled and
experimental results agree closely over the range of frequencies.

The superharmonic resonances are less visible in the experiment and in the simulation
at the high electric bias field, as seen in Figure 9. By going to the large bias levels, the
non-linear system has essentially been linearized. The hyperbolic model again provides
close agreement over the range of frequencies. The quadratic model overpredicts the
response at high electric field levels, because the 400 V/mm DC electric bias is beyond the
valid range of the reduced material constitutive relationships.

7. CONCLUSIONS

In this paper, theory and experiments describing the use of electrostrictive elements for
structural actuation have been presented. The electromechanical behavior was presented
in context of its constitutive relationships. The general form of the non-linear constitutive
relationships for an electrostrictor was placed in terms of quadratic relationships and in
terms of hyperbolic tangent squared relationships. The constitutive relations were
introduced into a generalized form of Hamilton’s Principle. Introducing an assumed mode
formulation allowed these equations to be succinctly expressed in terms of an actuator
equation and a sensor equation. The actuator equation describes the dynamics of the
mechanical system, the sensor equation describes the dynamics of the electrical system and
these equations are coupled by the electromechanical terms. The equations of motion in
assumed modes form could be utilized in a finite elements solution scheme or in a
Rayleigh–Ritz solution, since the general forms of the two techniques are similar. Although
the derivation was applied to the case of an electrostrictor, the derivation is far more
general and forms a framework around which the global dynamics of many coupled
non-linear systems can be derived.

The general model for an electrostrictively coupled system was applied to the special case
of an electrostrictive wafer (0·9 PMN – 0·1 PT) mounted on a cantilevered beam. The
dynamics of the electrostrictively coupled system were predicted based upon the separate
dynamics of the cantilevered beam and of the electrostrictor. There was solid agreement
between the predicted and experimentally measured strain and electrical displacement over
a wide range of frequencies and voltages. The quadratic non-linearity of the electrostrictor
can lead to a superharmonic resonance, in which case an excitation at half of the natural
frequencies leads to a resonance at the natural frequency. The superharmonics greatly
decreased as the bias voltage was increased.

This investigation did not address the temperature sensitivity of PMN–PT. The stiffness
variation with voltage was modelled, but was not included in the beam experiments.
However, the formalism by which these factors could be included has been established in
this paper.
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APPENDIX: NOMENCLATURE

U	 electric field correction to the electrome-a number of assumed structural displace-
ment modes chanical coupling term; tensor

r modal amplitudes of physical displace-b number of assumed electrical modes (i.e.,
the number of electrical surfaces) ment; [a×1] vector—or elastostrictive

B f generalized co-ordinate conversion matrix coupling constants; tensor
R elastostriction coupling term; tensorfor forces; [a×6] matrix

Bq generalized co-ordinate conversion matrix r density; scalar
s compliance matrix; [6×6] matrixfor charges at electrodes; [b×3] matrix
S strain vector; [6×1] vectorC stiffness matrix; [6×6] matrix

Cd damping matrix; [6×6] matrix t time or ply thickness; scalar
D electrical displacement vector; [3×1] T stress vector: [6×1] vector

vector T* complimentary kinetic energy; scalar
E electric field vector; [3×1] vector u vector of mechanical displacements; [6×1]

matrixo dielectric of the electrostrictor; [3×3]
U potential energy; scalarmatrix
v vector of generalized electric coordinates;f vector of applied forces; [6×1] vector

[b×1] vectorF* hyperbolic field term; tensor
V volume; scalarG higher order electrostrictive charge storage

matrix; [b× b] matrix W*e complimentary electrical energy; scalar
H enthalpy of the system; scalar Wm magnetic energy; scalar

W externally applied work; scalarI identity matrix; [a× a] matrix
k hyperbolic relaxation factor; scalar v natural frequency; scalar

z damping ratio; scalarK stiffness matrix; [a× a] matrix
Lu linear differential operator for elasticity; j dummy variable indicating the state of the

system along an arbitrary path; scalar[6×6]
Lv differential operator for electricity; [3×1] j	 value of the dummy variable at the end of

the path and reflecting the current state ofvector
the system; scalarM mass matrix; [a× a] matrix

m electrostrictive material constants relating
electric field with strain; scalar

m* electrostrictive coupling term—this in-
cludes a electric field term; [3×6] matrix Superscripts

Nr modal vector of mechanical strains; [6×a] a pertains to the actuator
matrix E value measured at constant electric field

Nv modal vector of electric fields; [3× b] s pertains to the structure
t transposen Poisson ratio
T value measured at constant stresscr modal vector of mechanical displacements;
−1 inverse[6× a] matrix

cv modal vector of voltages; [3× b] matrix ( )' derivative with respect to j
* includes an electric field term8 electrical potential; scalar

q applied electrode charges; [3×1] vector
Q electrostrictive capacitance matrix; [b× b]

matrix
U electromechanical coupling matrix; [a× b] Subscripts

matrix i, j, k, l, m, n, p, q, r, s, t, u tensor indices


